MA8402 – PROBABILITY AND QUEUEING THEORY

(REGULATION 2017) Prepared by, S. Kanagalakshmi, AP/Mathematics

UNIT-2

TWO DIMENSIONAL RANDOM VARIABLES

- Many situations of our Engineering problems are handled by the theory of two random variables.
- Hence such important concepts as auto correlation, cross – correlation and co-variance functions, which apply to random processes, are based on two random variables

RANDOM VARIABLES

RANDOM VARIABLES

DISCRETE

CONTINUOUS

Marginal Probability Function of X

- If the joint probability distribution of two random variables X and Y is given then the marginal probability function of X is given by
 P_x(x_i) = p_i (marginal probability function of Y)
- Conditional Probabilities
- The conditional probabilities function of X given Y = y_i is given by P(X/Y)

From the following joint distribution of X and Y find the marginal distributions.

X	0	1	2
0	3/28	9/28	3/28
1	3/14	3/14	0
2	1/28	0	0

Solution

Solution

X	0	2	$P_{Y}(y) = p(Y=y)$
0	3/28 P(0,0)	3/28 P(2,0)	$15/28 = P_y(0)$
1	3/14 P(0, 1)	3/14 P(1,1)	$6/14 = P_y(1)$
2	1/28 P(0,2)	0 P(2,2)	$1/28 = P_y(2)$
$P_X(X) = P(X=x)$	10/28 = 5/14 P _X (0)	3/28 P _X (2)	1

The marginal distribution of X

$$\begin{aligned} P_X(0) &= P(X=0) = p(0,0) + p(0,1) + p(0,2) = 5/14 \\ P_X(1) &= P(X=1) = p(1,0) + p(1,1) + p(1,2) = 15/28 \\ P_X(2) &= P(X=2) = p(2,0) + p(2,1) + p(2,2) = 3/28 \end{aligned}$$

The marginal distribution of X

$$P_X(0) = P(X = 0) = p(0,0) + p(0,1) + p(0,2) = 5/14$$

 $P_X(1) = P(X = 1) = p(1,0) + p(1,1) + p(1,2) = 15/28$
 $P_X(2) = P(X = 2) = p(2,0) + p(2,1) + p(2,2) = 3/28$
Marginal probability function of X is

$$P_{x}(x) = \begin{cases} \frac{5}{14}, & x = 0\\ \frac{15}{28}, & x = 1\\ \frac{3}{28}, & x = 2 \end{cases}$$

-

The marginal distribution of Y

$$P_Y(0) = P(Y = 0) = p(0,0) + p(1,0) + p(2,0) = 15/28$$

 $P_Y(1) = P(Y = 1) = p(0,1) + p(2,1) + p(1,1) = 3/7$

 $P_{Y}(2) = P(Y = 2) = p(0,2) + p(1,2) + p(2,2) = 1/28$ Marginal probability function of Y is

$$P_{Y}(y) = \begin{cases} \frac{15}{28}, & y = 0\\ \frac{3}{7}, & y = 1\\ \frac{1}{28}, & y = 2 \end{cases}$$

.

THANK YOU